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Abstract
A nonlinear model representing the tribological problem of a thin solid lubricant layer between
two sliding periodic surfaces is used to analyze the phenomenon of hysteresis at
pinning/depinning around a moving state rather than around a statically pinned state. The
cycling of an external driving force Fext is used as a simple means to destroy and then to recover
the dynamically pinned state previously discovered for the lubricant center-of-mass velocity.
Depinning to a quasi-freely sliding state occurs either directly, with a single jump, or through a
sequence of discontinuous transitions. The intermediate sliding steps are reminiscent of
phase-locked states and stick–slip motion in static friction, and can be interpreted in terms of the
appearance of traveling density defects in an otherwise regular arrangement of kinks. Repinning
occurs more smoothly, through the successive disappearance of different traveling defects. The
resulting bistability and multistability regions may also be explored by varying mechanical
parameters other than Fext, e.g. the sliding velocity or the corrugation amplitude of the sliders.
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1. Introduction

Nonlinear systems driven far from equilibrium exhibit a very
rich variety of complex spatial and temporal behaviors [1].
In particular, in the emerging field of nanoscale science and
technology, understanding the nonequilibrium dynamics of
systems with many degrees of freedom which are pinned in
some periodic potential, as is commonly the case in solid-
state physics, is often becoming an issue. Friction belongs
to this category too, because the microscopic corrugation
of the mating surfaces may interlock [2, 3]. Simple
phenomenological models are important, as they often give
not only a qualitative understanding of experimental findings,
but also fair quantitative agreement with nanoscale tribology
data, and with realistic simulations of sliding phenomena [4].
In this line of simplified approaches, studies are typically
restricted to describing microscopic dynamics in one (1D)
or two (2D) spatial dimensions. The substrates defining the

moving interface are modeled in a simplified way as purely
rigid surfaces or as one- or two-dimensional arrays of particles
interacting through simple (e.g. harmonic) potentials. Despite
such a crude level of description, this class of approaches
frequently reveals the ability of modeling the main features of
the complex microscopic dynamics, ranging from regular to
chaotic motion [5–7].

One of the pervasive concepts of modern tribology—
with a wide area of relevant practical applications as
well as fundamental theoretical issues—is the idea of free
sliding connected with incommensurability. When two
crystalline workpieces with incommensurate or misaligned
lattices are brought into contact, the minimal force required
to achieve sliding, i.e. the static friction, should vanish, at
least provided that the two crystals are stiff enough. In
such a geometrical configuration, the lattice mismatch can
prevent interlocking of the two periodic corrugations and
the resulting collective stick–slip motion of the interface
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atoms, with a consequent dramatically reduced frictional force.
Experimental observation of this sort of superlubric and
anisotropic regime of motion has been reported recently [8, 9].
The paradigm of frictionless sliding is realized naturally by
the 1D Frenkel–Kontorova (FK) model (see [5] and references
therein). However, the physical contact between two solids
is generally mediated by so-called ‘third bodies’, and the role
of incommensurability has recently been extended [10] in the
framework of a driven 1D model inspired by the tribological
problem of two sliding interfaces with a thin solid lubricant
layer in between. The frictional interface is thus characterized
by three inherent length scales along the sliding direction: the
periods of the bottom and top substrates, and the period of
the embedded solid lubricant structure. In particular, in the
presence of a uniform external driving velocity, the interplay of
these incommensurate length scales can give rise to intriguing
dynamical phase locking phenomena and surprising velocity
quantization effects [11, 12].

Previous numerical and theoretical studies of this confined
tribological model [11–13] discovered a quantization of the
lubricant center-of-mass (CM) relative velocity and found it
to be related to the pinning of topological density excitations
(kinks) to the substrate of closest periodicity. More recent
work [14] highlighted a strict analogy of these dynamical
pinning phenomena to the ordinary commensurate pinning of
static friction [15, 16]. The proposed mapping between this
dynamical pinning and that of static friction was explored
numerically by analyzing the effect of an additional external
driving force Fext, equal for all lubricant particles. Dynamical
pinning is signified by the lubricant CM relative velocity
remaining robustly locked to the quantized plateau value (a
value strictly and analytically determined by spatial periodicity
ratios alone) up to a critical force threshold, above which
quantization is destroyed.

It was also found that, as long as inertial effects are
non-negligible compared to dissipative forces (underdamped
regime of motion), the adiabatic variation (increase and
decrease) of the external driving force gives rise to a large
hysteresis loop in the vcm–Fext characteristics, not unlike
depinning in static friction [5, 15]. The present paper focuses
precisely on the hysteretic behavior around a dynamical
quantized steady state that this system exhibits, and discusses
similarities and differences between such a dynamical locking
and the more usual static pinning. By exploiting configurations
where the dynamics of individual kinks is easy to monitor
visually, the mechanism of hysteresis will be clarified. Given
the practical difficulty of an experimental setup where an equal
driving force is applied to each lubricant particle on the fly, the
Fext term may be seen more as a useful mathematical device
rather than a realistic suggestion for future measurements
aimed at studying dynamical depinning. On the other
hand, we will bring concrete examples of the hysteretical
destruction and recovery of the CM velocity plateau by means
of parameters other than Fext being cycled. The cycling of
the substrate sliding velocity or of the applied load sketch
practical possibilities to address the dynamical hysteresis in
experimental tribological investigations.
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Figure 1. Normalized velocity of the center of mass, vcm/vext, as a
function of the chain stiffness K F+/a+, for vext = 0.1(F+a+/m)1/2,
γ = 0.1(F+m/a+)1/2, and r+ = (1 + π1/4)/2. Crosses: one-to-one
kink coverage θ = 1 (r− � 7.036); diamonds: commensurate kink
coverage θ = 5/4 (r− � 8.795); circles: incommensurate kink
coverage θ = (1 + 101/2)/3 (r− � 9.762). Dashed line: the
quantized plateau velocity ratio of equation (2). Note the logarithmic
scale in the abscissa. Inset: a sketch of the driven 3-lengthscale
confined model.

2. Confined lubricant model: numerical simulations

We will work with the one-dimensional generalization of
the standard FK model introduced in [11, 12], consisting
of two rigid sinusoidal substrates, of spatial periodicity a+
and a−, and a chain of harmonically interacting particles, of
equilibrium length a0, mimicking the sandwiched lubricant
layer, as sketched in the inset of figure 1.5 The two substrates
move at a constant relative velocity vext = v− − v+. In
particular, we select the reference frame where v+ = 0 and
v− = vext. The equation of motion of the i th lubricant particle
is:

mẍi = −1

2

[
F+ sin

2π

a+
xi + F− sin

2π

a−
(xi − vextt)

]

+ K (xi+1 + xi−1 − 2xi) − 2γ (ẋi − vw) + Fext, (1)

where m is its mass. F± are the amplitudes of the forces due
to the sinusoidal corrugation of the substrates. By default,
we set F−/F+ = 1 as the least biased choice, but we will
explore the effect of modifying F− in section 3 below. K
is the chain spring constant defining the harmonic nearest-
neighbor interparticle interaction. The penultimate damping
term in equation (1) originates from two symmetric frictional
contributions adding as follows: −γ (ẋi − v+) − γ (ẋi −
v−) = −2γ (ẋi − 1

2vext), where γ is a viscous friction
coefficient accounting phenomenologically for degrees of
freedom inherent in the real physical system (such as substrate

5 The harmonicity of interactions within the lubricant chain is merely a
simplifying assumption, since test simulations with anharmonic interparticle
potentials (e.g. Morse and Lennard-Jones) also reveal the ubiquity of the
observed phenomenology.
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phonons, electronic excitations, etc) which are not explicitly
included in the model; this fixes the reference speed of the
dissipative term: vw = 1

2vext.6 In order to probe the strength of
quantization, and eventually address hysteresis, an additional
constant force Fext is applied to all chain particles and varied up
and down adiabatically. The infinite chain size is managed—
in the general incommensurate case—by means of periodic
boundary conditions (PBC) and finite-size scaling [13]. We
set overall a+ = 1, m = 1, and F+ = 1 as basic dimensionless
units, and express implicitly all mechanical quantities in terms
of natural model units obtained as combinations of these three
basic units [13].

As was previously found [11–14], the detailed behavior
of the driven system in equation (1) depends crucially on the
relative (in)commensurability of the substrates and the chain.
The relevant length ratios are defined by r± = a±/a0; we
assume r− > min(r+, r−1

+ ), whereby the (+) substrate has the
closest periodicity to the lubricant, the (−) slider the furthest.
Under rather general dynamical conditions, the lubricant slides
with a quantized mean velocity vplateau relative to the (+)

substrate. The plateau phenomenon was explained by the static
pinning of the topological solitons (kinks) that the embedded
chain forms with the (+) substrate to the (−) slider [11, 13].
Specifically, the quantized plateau lubricant velocity ratio

vcm

vext
= vplateau

vext
≡ 1 − 1

r+
, (2)

is strictly a function of the lubricant coverage r+ of the (+)

substrate [11], i.e. of the absolute density (r+ − 1)/a+ of
kinks. For antikinks, r+ < 1, this density is negative, and so is
vplateau—namely the lubricant slides backwards [11]. Although
the quantized plateau velocity depends uniquely on r+, the
plateau dynamical stability and extension depend crucially on
the kink coverage

θ = a−
r+ − 1

a+
= r−

(
1 − 1

r+

)
(3)

of the (−) substrate (for antikinks, θ < 0). Concretely, as a
function, e.g. of the spring stiffness K , the quantized plateau
is very prominent in a range of K of the order of unity but
weakens and eventually terminates for stiffer chains (larger K
values); see figure 1. The plateau destabilization is complete
for a general irrational θ , while, under suitable conditions
detailed below, the plateau can survive up to indefinitely large
K for commensurate kink coverage (rational θ ). The quantized
velocity plateau is finally particularly robust for perfect one-to-
one matching of the soliton and the (−) slider periodicities,
θ = 1 [14]. To illustrate these three typical cases, we
consider r+ = (1 + π1/4)/2 � 1.166 and the three values
r− ≡ θ(1 − r−1

+ )−1 � 7.036, 8.795, and 9.762, corresponding
to the values θ = 1, θ = 5/4 = 1.250, and θ = (1 +
101/2)/3 � 1.387, respectively. The choice of r+ near unity
is especially advantageous compared to values like the golden

6 We choose this value of the velocity vw = 1
2 vext, to which dissipation

refers, as the least biased option. Different choices, equivalent to choosing
different γ+ and γ− dissipation coefficients to the two substrates, would at
most change the quantitative details of the velocity plateau boundaries, but not
the qualitative nature of the results.

mean (1 + √
5)/2 � 1.618 that is often used, because it

gives rise to well-separated individual kinks, which allow a
more transparent analysis of the dynamics. Many qualitative
features discussed for the specific ratios r± considered here
are in fact also found for general values of r±, and thus this
specific choice of length ratios should not be considered to
be especially restrictive, as long as a correct distinction of
different commensuration property of θ , equation (3), is made.

The equations of motion (1) are integrated using a standard
fourth-order Runge–Kutta algorithm. The system is initialized
with the chain particles placed at rest at uniform separation a0,
and the top substrate is made to slide at the imposed constant
velocity v− = vext. For Fext = 0 and a wide range of
model parameters, after an initial transient the system reaches a
steady state, where all dynamical quantities other than particle
positions fluctuate but show no systematic drift. For wide
ranges of parameters, exemplified in figure 1 by the spring
stiffness K , the lubricant reaches the expected plateau state
of normalized time-averaged velocity vplateau/vext � 0.142,
equation (2), the same for the three geometries introduced
above.

Adiabatic upward and downward variation of the external
force Fext is realized by changing Fext in small steps and letting
the system evolve at each step for a time that is long enough
for all transient stresses to relax. This allows us to gage the
robustness of the plateau state as a function of the system
parameters, e.g. of K . In order to determine the critical values
of Fext, where the plateau is abandoned and retrieved, and in
particular to do that with great accuracy and a reasonably small
number of separate simulations, we first increment Fext in steps
of 0.01F+, and then reduce the step width using a bisection
scheme around the critical force.

3. Results

For concreteness, we begin with the specific example θ =
5/4, and pick an intermediate value of the chain stiffness
K = 5F+/a+, common to all plateaus of figure 1. We
start investigating the plateau destruction/recovery induced
by varying the external force Fext through a sequence of
adiabatic increases and decreases [17]. The resulting CM
velocity is displayed in figure 2 for two different external
driving velocities vext. A clear hysteretic loop emerges, with
qualitatively similar features for high (upper panel) and low
(lower panel) values of vext. Interestingly, and somewhat
unexpectedly, the hysteretic regions are systematically broader
for larger sliding velocities vext. We will return to this point
later on.

The exact plateau state implies a kind of dynamical
incompressibility, namely an identically null response to
perturbations or fluctuations trying to deflect the CM velocity
away from its quantized value. Indeed, as long as Fext remains
below a critical threshold F+↑

c , it does perturb each individual
single-particle motion, but has no effect whatsoever on vcm,
which remains exactly pinned to the quantized value, as is
indeed expected of an incompressible state. This behavior
contrasts with all observed non-plateau sliding states, where
vcm increases monotonically with Fext. This plateau state
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Figure 2. Hysteresis in the vcm–Fext characteristics for a confined
chain of intermediate spring stiffness (K = 5F+/a+), and length
ratios r+ = (1 + π1/4)/2, θ = 5/4 (r− � 8.795). The behavior is
shown for fast (vext = 0.1, upper panel) and slow (vext = 0.01, lower
panel) drive. Adiabatic increases and decreases of Fext (in steps of
10−3 F+) are denoted by crosses and circles, respectively.
Characteristic hysteretic multi-step features appear. Here
γ = 0.1(F+m/a+)1/2, and a chain of N = 387 lubricant particles is
simulated.

is reminiscent of the pinned state of static friction, where a
minimum force (the static friction force) is required to initiate
the motion. Except that here in the starting ‘pinned’ plateau
state the lubricant chain particles are moving relative to both
substrates. The sudden upward jump of vcm taking place
at Fext = F+↑

c can thus be termed a dynamical depinning.
The depinning transition line F+↑

c appears as a ‘first-order’
line, with a finite jump �v in the average vcm and a clear
hysteretic behavior: as Fext is reduced back, the depinned
state survives below F+↑

c down to a significantly smaller
F+↓

c , where perfectly quantized plateau sliding is retrieved,
as illustrated in figure 2. Several hysteretic loops are in
fact observed in figure 2: a qualitatively similar multi-step
behavior appears also for θ = 1 and θ = (1 + 101/2)/3.
We shall return below to the nature of these steps. The
large-Fext quasi-free sliding regime is characterized by vcm

increasing continuously, roughly proportionally to Fext/γ , and
superposed to this general translational motion, by chaotic
single-particle movements, contrasted to the periodic (θ =
1, 5/4) or quasi-periodic (θ = (1 + 101/2)/3) individual-
particle oscillations in the plateau state.

The values of F+↑
c , F+↓

c , and �v are nontrivial
functions of the parameters. Specifically, figure 3 reports
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Figure 3. The (K , Fext) phase diagram illustrating the
unpinning–repinning transitions for r+ = (1 + π1/4)/2, γ = 0.1,
vext = 0.1, and for (a) one-to-one kink coverage θ = 1;
(b) commensurate kink coverage θ = 5/4; (c) incommensurate kink
coverage θ = (1 + 101/2)/3. The white areas have perfect plateau
dynamics; the dotted region indicates quasi-free sliding. Simulations
performed with N = 387 particles for (a) and (b) and with N = 781
particles for (c).

the K dependence of these critical forces in the three cases
considered. The values of the critical forces are remarkably
similar for K < 4, while important differences are observed as
the springs become stiffer. In particular, for unity coverage
(θ = 1) the plateau is very stable and extends to very
large K , as expected in a fully commensurate case; see
figure 3(a). In contrast, for noninteger θ , the plateau becomes
more fragile for large K . For commensurate θ = 5/4, the
plateau width decreases with some fast power law of K , and
becomes numerically difficult to detect beyond K � 60. For
incommensurate θ = (1+101/2)/3 instead, the plateau shrinks
and disappears at finite K = K dyn

Aubry � 24: no sign of a
quantized plateau is detectable, e.g. for K = 25. This
unequal behavior for commensurate/incommensurate coverage
θ is understood in terms of the mapping of the dynamical
sliding model to the static FK model, which was established in
[14]. The hysteretic depinning transition is observed through a
significantly wide K -range in all three cases, but the depinning
mechanism differs in some important detail.

3.1. Fully commensurate θ = 1

As illustrated in figure 3, for θ = 1 the plateau extends
to very large K , in a range of Fext of decreasing width ∝
K −1. K −1 describes precisely the asymptotic decrease in

4
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Figure 4. Soft chain (K = 5). Four snapshots of a 60-particle section of the lubricant chain and (+/−) substrates (lower/upper sinusoids), at
successive times separated by 14 time units (a+m/F+)1/2. The horizontal direction represents distance and the dots represent the particle
positions xi . Vertical displacements of dots measure the distance xi − xi−1 of a given particle to its left neighbor: on this scale, the horizontal
solid and dashed lines indicate the average interparticle distance a0 and the (+) lattice parameter a+, respectively. The snapshots refer to
r+ = (1 + π1/4)/2, θ = 1, Fext = 0.081 36 (decreasing), and illustrate the crossing of the critical line F+↓

c , with the recovery of the plateau
state (see figure 2) occurring through the disappearance of the last bi-kink–no-kink defect. The other parameters are γ = 0.1, and vext = 0.1.
This annihilation of a bi-kink against a stationary no-kink is best illustrated by the online animation repinning theta1 K5.gif, (available at
stacks.iop.org/JPhysCM/20/224020) which spans 70 time units, starting 11 time units before frame (a) and ending 17 time units after frame
(d) of the present figure. For this and all animations, we select the reference frame where the (−) substrate, and thus all pinned kinks, are
stationary.

the sinusoidal interparticle distance modulation, residual after
solitons overlap one another in the large-K limit. For very large
K , outside the right end of figure 3(a), the asymptotic values
of this F+↑

c curve lie entirely in the negative-Fext domain.
The explanation is that it takes a negative external force to
compensate the positive average dissipative ‘wind’ force Fw =
−2γ (vcm − vw) acting on each lubricant particle. On the
plateau state, this wind force amounts to

Fw = −2γ (vplateau − vw) = 2 − r+
r+

γ vext. (4)

In the absence of the external driving Fext, the wind force alone
is sufficient to disrupt the plateau at large K , where it is more
fragile, as seen on the large-K side of figure 1. However, once
Fw is compensated away, the θ = 1 quantized plateau extends
to indefinitely large K .

The next result concerns hysteresis, still at θ = 1.
Depinning is discontinuous and hysteretical, as exemplified in
figure 2, but only up to a large but finite critical stiffness K =
K∗ � 330. Near K∗ the bistability range F+↑

c − F+↓
c closes up

with a power law F+↑
c − F+↓

c = B(K∗ − K )α , not unlike what
was observed in previous work for the golden mean ratio [14].
Above the critical stiffness, for K � K∗, F+↑

c ≡ F+↓
c ,

the depinning transition is continuous and characterized by
what appears to be a mean-field power law vcm − vplateau ∝
(Fext−F+↓

c )1/2. For K approaching K∗ from below, the plateau
is abandoned through different mechanisms depending on the
model parameters. In [16] it was found that repinning in the
continuous sine–Gordon model proceeds first through a series

of ‘cavity-mode’ states, and then a series of kink–antikink
wave train states, and a similar scenario is exhibited also by
the discrete FK chain [15]. We find that analogous phenomena
occur here for the repinning to the dynamical plateau, with
defects in the kink lattice taking the place of the kink–antikink
pairs of the single-chain FK model.

For soft enough chains, individual kinks are visible and
well distinct. For example, figure 4 (decreasing Fext) illustrates
the mechanism supporting deviations from the plateau for K =
5, the same value as figure 2. A kink vanishes at a (−) lattice
site and joins a second kink to form a mobile ‘bi-kink’. This
extra density accumulation ‘binds’ substantially less than a
kink to the minima of the (−) potential. The external force
Fext acts on the bi-kink density lump and drags it along to the
right. Contrary to the bi-kink, the site with a missing kink
(‘no-kink’) remains well pinned to the (−) potential, and is
not dragged by the external force Fext. The moving bi-kink
breaks the ‘quantized’ motion by one single particle, and is
responsible for displacing the lubricant CM velocity a little bit
away from the exact vplateau.

The number of bi-kink–no-kink pairs tends to increase
rapidly with increasing Fext − F+↓

c . The force F+↑
c necessary

to nucleate the first bi-kink–no-kink pair is sufficiently large
to sustain an avalanche of more bi-kink–no-kink pairs after the
first defect is nucleated. Trains of bi-kinks cross the chain,
producing essentially chaotic motions of the single lubricant
particles, provided that Fext 	 F+↓

c . When, starting from this
dislodged or depinned state, Fext is gradually reduced, bi-kink–
no-kink pairs annihilate; the number of these pairs reduces

5
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bi–kink

(d)
no–kink
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Figure 5. Stiff chain (K = 50). Four successive snapshots of the substrates and lubricant chain, separated by time intervals of nine model
units. All notations and parameters are the same as in figure 4, except for K = 50, Fext = 0.006 85 (decreasing), which falls in the region
immediately above the critical line F+↓

c , before the recovery of the plateau state. The complete collision of the right-traveling bi-kink and
left-traveling no-kink is best illustrated by the online animation unpinned theta1 K50.gif, (available at stacks.iop.org/JPhysCM/20/224020)
which spans 50 time units, starting 16 time units before frame (a) and ending seven time units after frame (d).

steadily with time. The discrete, integer nature of the defect
pair number originates the (gently sloping) discrete downward
staircase steps in the hysteresis loop, generally similar to those
shown in figure 2 (for a different θ ). Since the discrete effect of
the disappearance of a single defect pair becomes negligible in
the infinite-size limit, the observed multi-step structure appears
to be merely a finite-size artifact and, for all that we can tell at
present, the infinite system should exhibit no staircase steps.
In the depinned state, so long as Fext is strong enough, a bi-
kink encounters a no-kink, interacts briefly, and then continues
to travel. When instead Fext is reduced below F+↓

c , as in
figure 4, the encounter of a bi-kink and a no-kink leads to
reciprocal annihilation. The amplitude oscillation still visible
(but quickly damped) at the right end side of the last frame
of figure 4 reflects the waves dissipating the excess (‘binding’)
energy of the bi-kink–no-kink pair, in the process of recovering
the perfect kink lattice. When finally the kink lattice gets rid of
the last defect pair, the perfect plateau state is re-gained.

For a stiff enough chain, individual kinks become spatially
broad, and will, for a fixed density, extend over a size larger
than the average interkink distance a+/(r+ − 1). In this limit
the kink lattice reduces to a weak sinusoidal deformation,
of amplitude ∝ K −1 superposed on the average interparticle
density. Despite this difference with the strong kink lattice
of the soft chain case, the external-force-induced departure
from the quantized velocity plateau occurs here through a
mechanism similar to that illustrated above for the soft spring
case. A chain slippage by one particle (i.e. a distance a0)
is promoted by a bi-kink and a no-kink moving in opposite
directions: when they collide, the bi-kink–no-kink pair takes
the aspect of a broad locally flat region of denser-than-average
and less-dense-than-average lubricant in the otherwise perfect
pinned kink lattice. As illustrated in figure 5(a), a local

flattening defect forms in the soliton lattice, similar to the
local amplitude suppression of a dragged charge density wave
(CDW) [18, 19]. This defect is characterized by a smooth
‘charge’ separation, with the denser region being driven to the
right and the more rarefied region to the left by the driving
force, the external force acting like an electric field on a
CDW insulator. These defects travel in opposite directions, as
expected of opposite charges driven by an electric field. The
crucial difference to the soft spring case (where, as shown
by figure 4, the no-kink defect remains pinned to the (−)

lattice) is that here both defects (bi-kink and no-kink) are
mobile and dragged by the external force. As the two defects
move apart, a perfect soliton lattice re-forms in between; see
figure 5(d). In time, a right-moving bi-kink encounters a
left-moving no-kink: these defects may again cross, or else
they may bind and annihilate in pairs. Annihilation occurs
when Fext is reduced below F+↓

c , as in the soft chain case
of figure 4. When, instead, Fext > F+↓

c , the pair separates
again, with the rightward ‘positive’ and leftward ‘negative’
flattenings suffering some phase shift, but traveling on, as in
figure 5. As soon as all defects annihilate, the kink lattice is
perfect, and the CM velocity recovers vplateau exactly. If the
defect pairs form at regular spatial separation within the chain
(with periodic boundary conditions) the corresponding moving
pattern leads to time-periodic fluctuations of the CM velocity;
this can also be seen as type-I intermittencies [20]. Otherwise,
when defect motion is chaotic, an irregular CM dynamics is
observed. For indefinitely growing chain stiffness K , each
defect pair flattening region grows in size, eventually covering
the entire finite-size simulation, which becomes at that point a
poor representation of the infinite-size thermodynamical limit.

Figure 6 draws the plateau boundaries relative to Fext, for
varied external driving vext, for a rather stiff chain (K = 50).
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Figure 6. Driving-velocity dependence of the dynamical depinning
and repinning forces F+↑

c F+↓
c , F−↓

c F−↑
c (shifted upward by the

trivial Fw ∝ vext contribution, equation (4)). vext is measured in
model units of (F+a+/m)1/2; the chain is rather hard (K = 50);
r+ = (1 + π1/4)/2, θ = 1 (r− � 7.036), and γ = 0.1.

As the friction-drag reference force Fw grows linearly with
vext, and this introduces a trivial compensating trend F±↑/↓

c ∝
−Fw, it is convenient to remove the appropriate linear drift by
adding Fw, equation (4), to the critical forces. The static limit
vext = 0 is smooth, and this indicates a regime of continuity
from the static quasi-periodic 3-lengthscale model of [21]
to the dynamical sliding. Strikingly, the plateau robustness
against the external perturbing force Fext and the widths of the
hysteretical regions benefit from increased driving speed. For
large vext � 7, the plateau destabilizes suddenly and eventually
disappears.

3.2. Commensurate θ = 5/4

Having explored at length the θ = 1 commensurability,
we now turn to another kink lattice/slider system, still
commensurate but with θ = 5/4, a weaker commensurability
than θ = 1. At θ = 5/4, in the perfect plateau state,
one kink out of four turns into a bi-kink, as illustrated in
figure 7. (The bi-kinks of the present θ > 1 case would
be replaced by no-kinks for θ < 1). The pre-existence of a
regular array of such defects of the kink lattice allows for a
significantly different depinning mechanism, compared to the
totally commensurate θ = 1 case. Defects of the kink lattice

are already present prior to turning on the external force Fext,
which only sets them into motion, without a need to create
them. For soft springs, figure 7(a), where the pinning energy
barrier of these defects is large, figure 3 shows that the critical
forces needed to set the defects into motion in this θ = 5/4
case are very similar to those for θ = 1. For harder springs,
defects increase in size and affect several neighboring kinks
now, as illustrated in figure 7(b). These extended disturbances
possess a much smaller pinning energy to the (−) potential.
As a consequence, the plateau state is now exceedingly weak,
confined to an extremely narrow force range around −Fw; see
figure 3. The ordered arrangement of defects still warrants
some amount of pinning, but the width F+↑

c − F−↓
c of the

pinned region decreases much faster than in the θ = 1 case as
soon as the defect size exceeds the typical interdefect distance
a+/(r+ − 1)/θ , here occurring for K � 10.

3.3. Incommensurate θ = (1 + 101/2)/3

Finally, at irrational θ = (1+101/2)/3, some kinks are replaced
by bi-kinks, but the incommensuracy of the coverage leads to
their irregular arrangement, as illustrated in figure 8. For a
sufficiently soft chain (represented by K = 5 in figure 8(a)),
the irregular distribution of single kinks and bi-kinks remains
statically pinned to the minima of the (−) substrate, with
a finite barrier to overcome for a bi-kink to migrate to the
next minimum. This barrier guarantees the existence and
robustness of the CM quantized velocity plateau (with a first-
order hysteretical boundary) in the present incommensurate
case, pretty much like for the commensurate cases. This energy
barrier protects the plateau against the movement of bi-kinks
until K < K dyn

Aubry � 24. In contrast, for a harder chain

(K > K dyn
Aubry), illustrated by K = 50 in figure 8(b), the

irregular distribution of single kinks and bi-kinks drifts through
the chain at a speed approximately proportional to Fext + Fw,
with no sign of any pinned plateau: this indicates that the
energy barrier is here entirely removed by the irregular bi-kink
configuration produced by incommensuracy. The kink–kink
repulsion makes the bi-kinks increasingly extended objects as
K increases, until they become so broad that crossing the
maxima of the (−) potential costs negligible energy: the bi-
kink in the central region of figure 8(b) exemplifies precisely
one such slow hopping process. The transition between the
soft chain dynamically pinned regime and the stiff chain fully
unpinned state is analogous to the Aubry transition observed in

(a)

bi–kinkbi–kinkbi–kink

kinks (b)

bi–kinkbi–kinkbi–kink
kinks

Figure 7. Typical plateau arrangements of the θ = 5/4 commensurate soft K = 5 (a) and hard K = 50 (b) chain: a regular arrangement of
bi-kinks (one every four kinks). The conventions and all other parameters are the same as in figure 4, but for Fext = −Fw.
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(a)

bi–kink bi–kinkbi–kink bi–kink

kinks (b)

bi–kink
hopping defect

kink

bi–kink

kink

Figure 8. θ = (1 + 101/2)/3 incommensurate soft chain K = 5 (a) and hard chain K = 50 (b): irregular alternation of kinks and bi-kinks.
Pinning is realized for the soft chain, while even with Fext = −Fw, so that vcm � vplateau, the K = 50 hard chain is unpinned, with the defects
slowly drifting along. The conventions and all other parameters are the same as in figure 4. The online file unpinned incommensurate.gif
(available at stacks.iop.org/JPhysCM/20/224020) provides an animation of the situation of snapshot (b). A second multimedia file,
unpinned incommensurate drifting.gif, (available at stacks.iop.org/JPhysCM/20/224020) shows the defects drifting under the effect of a
deviation of Fext by 10−3 force units in excess of −Fw.

the static situation described by the FK model. The kinks of
the dynamical model play the role of the particles of the static
model.

3.4. Hysteresis when cycling other parameters

By analogy to the single-chain FK model, cycling the external
force Fext is conceptually the most natural way to abandon and
recover, often hysteretically, the dynamical plateau. However,
in practice, the experimental realization of a uniform force
acting equally on each lubricant particle in flight is not
trivial. On the other hand, the plateau can be abandoned and
recovered, even when different parameters are cycled. Within
the present model, the reason is that the dissipation γ -term
has itself the effect of diverting the CM velocity away from
vplateau. In a concrete laboratory configuration moreover, beside
dissipative effects, other interactions too will tend to push the
lubricant slide at speeds other than vplateau. As an example,
defects and grain boundaries will tend to pin statically the
lubricant to either substrate [22]. These other ‘external’ forces
compete with the tendency to dynamical pinning: the latter
tuned by other parameters, namely (in the language of our
model) K F+ F− and vext. Thus in a practical straightforward
experiment, cycling quantities such as the sliding speed, or the
load applied to the sliders, should lead to leaving/recovering
the plateau dynamics, with hysteretic cycles similar to those
exemplified by figure 2.

To illustrate this point within our model, figure 9 depicts a
first example of such a hysteretic cycle, where the load applied
to the sliders, proportional to the upper slider corrugation F−,
is cycled. The plateau is abandoned hysteretically when F− is
decreased below critical values which depend strongly on the
robustness of the pinned state, which is, in turn, a function of
K and other model parameters.

Along a similar scheme, the perfectly legitimate
interpretation of figure 6 as a phase diagram suggests that
the first-order line separating the free sliding regime from the
perfect plateau could be crossed by cycling vext rather than Fext.
This cycle corresponds to tracking up and down the Fext = 0
dashed path drawn in figure 6. The resulting loop, shown in
figure 10(a), depicts the expected bistability: vext is cycled up
and down, and the perfect plateau is abandoned at much larger
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0.026 0.028 0.03 0.032 0.034 0.036
F
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increase

r
+
= (1+π1/4)/2

θ=1

v
ext

=0.1

K = 160

K = 5

(b)

(a)

Figure 9. Hysteresis loops found as the corrugation of the (−)
substrate F− is cycled down from (crosses) and back up to (circles)
its value F+ used in all other calculations. (a) At K = 160, near the
plateau edge of figure 1, it takes a small decrease in F− to leave the
plateau, while (b) when the plateau is very robust (K = 5),
nonhysteretic depinning is observed for a corrugation amplitude F−
far below unity. Simulations for r+ = (1 + π1/4)/2, θ = 1
(r− � 7.036), γ = 0.1, vext = 0.1.

speed than where it is recovered. At large speed, Fw increases,
and the dissipative term dominates and makes the lubricant
speed approach vw.

The depinning transition may also occur continuously,
when the transition line is crossed beyond the tri-critical
point, i.e. for K > K∗, in the strongly dissipative region,
where the viscous damping rate γ /m is much larger than the
vibrational frequencies, decreasing proportionally to K −1, of
the soft kink lattice around the minima of the (−) potential.
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Figure 10. (a) Hysteresis loop at the plateau edge in the vcm–vext

characteristics for a confined chain of length ratios
r+ = (1 + π1/4)/2, θ = 1 (r− = 7.036). Adiabatic increase and
decrease of vext are denoted by crosses and circles, respectively. Here
γ = 0.1(F+m/a+)1/2 and Fext = 0, which corresponds to the dashed
path of figure 6. (b) No hysteresis is observed in the overdamped
regime (γ = 1.0(F+m/a+)1/2) along the same path.

In this regime the dynamical depinning is apparently second
order. In this overdamped regime, shown for example in
figure 10(b), the forward and backward trajectories become
indistinguishable, and hysteresis disappears. In this strongly
dissipative regime, we find, instead of the hysteretic jumps,
a nonlinear dependence of vcm versus the model parameters
(here vext, but cycling Fext, F−, or K would lead to perfectly
analogous results), without any bistability phenomena.

4. Discussion and conclusions

We have shown that starting from the quantized sliding
plateau state, previously found for a simple tribological
model of a confined layer, the sliding dynamics of the
lubricant layer exhibits a large hysteresis when an additional
external driving force Fext trying to push vcm away from
its quantized value is cycled. In analogy to depinning in
ordinary static friction [15], the hysteretic dynamical behavior
depends strongly on whether the system degrees of freedom
have sufficient inertia (underdamped regime) or if, on the
contrary, inertia is negligible (overdamped regime). Hysteretic
versus continuous depinning occurs depending on whether the
unpinning transition is crossed below or above a tri-critical
point where hysteresis closes, and which marks the separation
between the underdamped and the overdamped dynamics.

Hysteresis arises due to the great robustness of the
quantized dynamics, setting a large critical threshold F+↑

c to
the formation of mobile defects (initially depinned bi-kinks
or no-kinks). Once at least one of these defects forms, an
avalanche process leads to a discontinuous jump to a free or
quasi-free sliding regime. Starting from the unpinned states,
the plateau recovers only at a much smaller threshold F+↓

c ,
representing the minimum driving force needed to sustain the
motion of pre-existing mobile defects.

Nontrivial differences with static friction occur. The
first is that the dynamical pinning hysteresis cycle may be
larger in situations where pinning itself could be intuitively
considered to be more fragile, e.g. for larger external velocity.
Another feature (presently under investigation, not discussed
above) is that the sudden application of an external force can
sometimes leave vcm locked to the quantized value, even if the
applied force is larger than the dynamic depinning threshold
F+↑

c obtained instead through the adiabatic procedure sketched
above. Once again, this is different from static depinning,
usually requiring smaller force (than the static friction Fs) if
applied suddenly [5].

The present study concentrates on zero temperature.
At finite temperature, the energy barrier to the formation
of defects such as bi-kinks and for defects ‘hopping’ to
neighboring pinning sites can be traversed by means of random
thermal excitations. This means that at sufficiently low
temperature the dynamical pinning should not change much.
Even the hysteresis should remain, provided that parameters
such as Fext are cycled much faster than the characteristic
thermal relaxation times. Thermal effects are currently under
closer investigation.
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